CHAPTER 1

The Classical Framework

[Particles and Waves]

“Bvery description of natural processes must be based on ideas which have been introduced and
defined by the classical theory”. (Niels Bohr)

Beginning with the base created by Galileo Galilei (1564-1642) and Isaac Newton (1642-1727)
and developed by the great savants of the eighteenth and nineteenth centuries [such as Lagrange
(1736-1813), Euler (1707-1783), Laplace (1749-1837), d’ Alembert (1717-1783), Poisson (1781-1840),
Gauss (1777-1855), Hamilton (1805-1865), Michael Faraday (1791-1867) and James Clerk Maxwell
(1831-1879)] one had at the eve of the twentieth century a beautiful and consistent framework that
seemed to explain satisfactorily all observed physical phenomena that mankind was conscious of till
that time. This structure was the Classical Mechanics of Particles, Rigid Bodies, Continuous Media
and Fields.

eThe cornerstone of this edifice was the Newton’s Equation of Motion :

—PF, =F;
dt

The time rate of change of the momentum (]31 = mi%ﬂ») of the i-th particle in a system of particles

(m; being its mass and 7; its position vector specifying its location) is equal to the net force Z*j’z
acting on it. Here by a particle is meant a point entity which possesses, however, a mass. A tangible
body could be modelled as a composite of such point particles. The equation of motion holds in
an inertial frame of reference which is one wherein a particle with no ascribable forces acting on it
would continue to be in the state of rest or in a state of uniform rectilinear motion. Such a frame
of reference could be imagined to be one far far away from all matter (and hence with no ascribable
forces therein) or one in uniform rectilinear motion with respect to that.

e Equivalently one may describe the dynamics of a system of N particles (say) moving in three
dimensions [3N co-ordinates 7; = (2;,¥:,2;) with ¢ = 1,2--- N] subject to some constraints (say
¢ in number) through f = 3N — ¢ independent generalized co-ordinates g(k = 1,--- f) (f
= number of degrees of freedom) and corresponding generalized velocities ¢, = %qk. The d’
Alembert Principle of Virtual Work enables one to introduce the notion of the generalized
force Fj and for a conservative system these forces are derivable as the negative gradient of the
potential V viz. Fj = —%V. The state of the system at a given time ¢ is described by specifying
the generalized co-ordinates and velocities {qk,¢r}, and the time evolution of the state is most
elegantly expressed in terms of the Lagrangian L defined through

L({gk, 4}, t) =T -V
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where T and V are the kinetic and potential energies respectively. The Newton’s Equation of Motion
may be re-expressed in the form of the Lagrange Equations of Motion

OL d oL

Ogqr  dt 9gy
e The Lagrange equations of motion can be recast as a variational principle. The Hamilton’s
Principle of Least Action states that a system with co-ordinates {qx(¢;)} at some initial time

t; and landing up with co-ordinates {qy(ts)} at some later time ¢; shall follow such a path in the
space of the co-ordinates so as to extremize the integral

y
S = / dt L({qk,qk},t)
t;

viz.

05 =0

Here S, known as the action, has the dimensions of energy times time or M L?>T 1.

To extremize the functional S (a functional is a function of a function) with respect to the
functions g (t) viz. the variation of the path, we use the Calculus of Variations. Consider arbitrary
variations dgi(¢) in the paths joining the given initial and final positions viz. with end points g (¢;)
and gi(ty) fixed, that is dqi(t;) = 0 = dqi(ts). Note that dgx(t) = <£dqx(t) as once a variation
in path is considered the change in the slopes are simply the derivatives of this variation. Thus
extremization of S with respect to variations in path implies

ty
65=0=0=0 [ dtL({qr,qr}t)
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Integrating the second term in the integrand (last step above) by parts
b+ 0L d oL tr d OL b+ d OL
t; gk qk t; qk t; qk

as gy = 0 at the end-points ¢; and ¢¢. Thus we arrive at
ts OL d 0L
0= dt — ———=—1}4
/ti Zk:{ Oqr  dt Og yoa

Since the integral must vanish for arbitrary dq; the only way this can happen is for the expression
in curly brackets to be equal to zero. Thus the Hamilton’s Principle of Least Action gives us the
Lagrange Equations of Motion which in turn follow from the Newton’s Equation of Motion.

e Another reformulation of Classical Mechanics was again effected by William Rowan Hamilton.
Introducing momenta py, (termed as) canonically conjugate to the co-ordinate g via py = g—qu , the
independent variables g and ¢ of the Lagrangian approach are traded for the independent variables
qr and pj through the introduction of the Hamiltonian

H=-L+) prix
k
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which is then re-expressed in terms of g and pi . The second-order Lagrange equations of motion
are then translated into pairs of the Hamilton’s Equations of Motion.

. OH
Qk—a—pk
)
pkffa—qk

e The Hamilton’s Equation of Motion may be elegantly restated through the introduction of what
are known as Poisson brackets which for any two dynamical variables A({qx,pr}) and B({qx, pr})

is defined through
0A 0B 0A 0B
A, B = _——
4. Blro ;(5% Opr Opy 3%)

Note that the Poisson bracket of a co-ordinate and its canonically conjugate momentum is unity.

gk, pilPB = 0Kl

where Jy; is the Kronecker delta which is unity if k =1 & zero otherwise.
The equations of motion in this formalism become

dr = [qx, H]pB

Pr = [pr, HpB

as can easily be checked to be nothing but the Hamilton’s equations of motion using the definition
of the Poisson bracket.

e Alternative ways of re-expressing mechanics is through a change from one set of canonically con-
jugate co-ordinates and momentum ({qx,pr} : (g, p;|PB = d;i;) to another ({Qr, P} : [Qk, Pjlp =
d;;) vide what is known as a Canonical Transformation. One such Canonical Transformation
leads to the Hamilton-Jacobi Formulation of Classical Mechanics.

e From the mechanics of particles Leonard Euler and others developed the dynamics of rigid
bodies (modelled as a system of particles constrained to move with the relative distance between
each pair of constituent particles fixed). Similarly the mechanics of continuous fluids was also
described by taking the distance between constituent particles (freely moving) to go to zero and at
the same breath taking their masses to go to zero such that the mass per unit volume goes to a
finite limit, the density of the fluid (taking the so-called hydrodynamical limit). One thus has the
Mechanics of Continuous Media and also the Theory of Fields. Here in particular the physics
of Electricity and Magnetism was captured through the work of Coulomb, Ampere, Gauss, Michael
Faraday and others culminating in the Maxwell’s Equations for the Electromagnetic Field,

e Another important area of advance was in the physics of matter in bulk described through
Thermal Physics, whereby such a system, rather than being described through the detailed motion
of its constituent ‘particles’, was characterised by gross variables such as its volume (V'), pressure
(P), temperature (T'), etc. Heat was recognized as a form of energy residing in the chaotic motion
of the atoms and molecules of the system. The Laws of Thermodynamics were formulated.
The first law was simply an expression of the conservation of energy stating that the heat (AQ)
added to a system equals the sum of the change in its internal energy (AU) and the work (AW)
done by the system (AQ = AU + AW), and the second law which is best formulated through
the notion of entropy (S) or degree of disorder in the system, a non-decreasing quantity in any
change. These developments are associated with the names of Clausius, Kelvin and others. Maxwell
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and Boltzmann and later Gibbs among others developed Statistical Mechanics which aims at
providing a probabilistic interpretation of thermodynamics linking it to discussions of the most
probable states of molecules obeying at its basis, however, the detailed mechanics of particles. Thus
the relative probability that a system in equilibrium at a temperature T shall have an energy F is

E
given by e *8T where kg is the Boltzmann constant.

While in the above discussion (on what we have called the Classical Framework) we have em-
phasised the conceptual aspects, one should also recognise that this development went hand in hand
with diligent and imaginative experimentation and did also involve speculations and delving into
the very nature of matter. It is therefore appropriate to add a few words on the classical view on the
level of the nature of substance. Thus Newton with his Laws of Motion and his Universal Theory
of Gravitation was able to explain the motion of the earth, of the moon and the planets, as also the
tides in the oceans and the law of falling bodies on earth. Yet he went on to speculate on the nature
of light (he adopted the corpuscular theory of light in that he conjectured that light rays consist of
particles). Having observed the phenomenon of refraction of light he put forward the hypothesis that
different colours corresponded to corpuscules of different sizes which while moving with the same
speed in vacuum travel* with different speeds in matter and hence one has refraction. This view was
contested by Huyghens and also by Young who through his observations on interference phenomena
(particularly the double slit experiment) argued cogently that this could be accounted for if light
consisted of waves. Newton with his predilection for particles was also a staunch atomist and was
sharply critical of those who believed in a continuum theory of matter. Indeed it is instructive to
quote from his Optiks (Book 3, Part I):

‘Quest 31. Have not the small Particles of Bodies certain Powers, Virtues or Forces, by which
they act at a distance, not only upon the Rays of Light for reflecting, refracting and inflecting them,
but also upon one another for producing a great Part of the Phenomena of Nature? For it is well
known that Bodies act upon one another by the Attractions of Gravity, Magnetism and FElectricity,
and these Instances show the Tenor and Course of Nature, and make it not improbable that there be
more attractive Powers than these ... The Attraction of Gravity, Magnetism and Electricity, reach
to very sensible distances, and so have been observed by vulgar eyes, and there may be others which
reach to so small distances as hitherto escape Observations ...’

Most of the development in the understanding of the existence and the nature of atoms be-
fore Rutherford and Bohr was derived from the study of chemical reactions. A short note on the
underlying history is given at the end of this Chapter.

Appendix 1A

As a prototype of continuum mechanics we discuss the longitudinal vibrations of a continuous
elastic string, starting with a necklace of point particles (beads) of mass m connected to each other
by massless springs of length A which on elongation gives rise to restoring forces proportional to
the extension (with Hooke’s constant k say), and then going to the continuum limit. Consider each
bead displaced from its equilibrium position by an amount &; (in the case of the jth bead say). As
far as the jth bead is concerned it experiences a force —(&; —&;41) due to the spring connected to
its neighbour on the right and —x(§; — ;1) due to that on the left.

*Interestingly this he based on his observations on the eclipses of the moons of Jupiter looking for possible colour
by colour re-appearance of light after the eclipse which would have been the case had different colours moved with
different velocities in vacuum. That such would not be easily detected, even if it were the case, was not clear at that
time
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Fig.1. Dynamics of a Necklace of Beads joined by Massless Springs

Consequently the Newton’s Equation of Motion for the jth bead is

2¢ .
mTE (6 - &)~ (&~ §0)

Now we want to make this necklace of beads (say N beads in all and N — 1 springs) to approach
a continuous string of length L. In order to do that we need to take N — oo, A — 0 such that
(N —1)A — L and also m — 0 with m/A — p the mass per unit length of the string and moreover
kA — T the tension on the string. We then have a continuous string of length L with mass per unit
length = p. Accordingly, the ordinal number of the beads (j) must be replaced by (or promoted to)
the continuous variable  measured along the string and thus ; — £(x), the displacement at the
point z along the string. Thus,

gj —>§({17,t)
0 A? 9?
§ir1 > &+ At) =E(z,t) + A%f(%t) + 7@5(1’@ +--
o A2 2
5]'71 - f(x - A7t) = E(.’E,t) - A%&(wvt) + 7W£(w7t) +-

where appropriate Taylor’s expansions have been instituted. These expressions when inserted into
Newton’s equation for the discrete system and the limit A — 0 (with ¢ — p) taken, results in the

partial differential equation
2 2

0 0
pwﬁ(ﬂv, t) = Tﬁﬁ(% t)

which is nothing but an equation for longitudinal waves along a continuous string. These waves

would have a velocity v = \/% .

Note that this system now has infinite degrees of freedom (as we have taken N — 0o) and thus,
as a result, in order to specify the state of the string at any given time ¢t we have to provide the
values of ¢ and £ = % at that instant at every point z along the string.

The same type of equation is also obtained for transverse vibrations of a string provided the
displacements are not too large. Thus for a sonometer or a stringed musical instrument (such as a
sitar) we may introduce modes of vibration of the string (viz. the fundamental and its harmonics or
overtones) which are a basic set of solutions. In the case when the two ends of the string are fixed
these may be taken to be standing waves of the form

En(z,t) = Sm(n_za:) cos(wnt)

where n is an integer which guarantees the satisfaction of the boundary condition that &,(xz =
0,t) = 0 = &,(z = L,t); and in order for it to be a solution of the wave equation we must have
pw2 = T";Z or w, = vk, where v, = 3= is the frequency and k, = i—“ is the wave number,

and of course v, A\, = v is the velocity of the wave. Any initial conﬁguratio% of the plucked string
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&(z,t = 0) (as shown in the figure above) can be expanded via the Fourier Series into the normal
modes:
The plucked string at a later time ¢ shall evolve into &(x,t) = 3" ansin(2F2) cos(wnt).

S~ NN

Fig.2. {(z,t = 0) =Y 0" ) anén(z,t = 0) =37 ) ansin(2FL)

Often we are not interested in end effects and we want a string which is infinite or a string
without ends. This is easily achieved by just identifying (joining) the two ends of the string of
length L via periodic boundary conditions.

&z =0,t) =&(x = L, 1)

We may look for travelling wave harmonic solutions & ., (z,t) = age Here k is the wave-
number viz. A = k is the wavelength (the distance marking the periodicity of £ in ). Also v = 2=
is the frequency, 2& " is the period in time after which at any given x the wave returns to its previous
i(kz—wt)

i(kx—wt)

value. Of course e is a solution of the wave equation provided vA = ¢ = v = \/; (the wave

velocity). Since w versus k is a straight line (w = v k) we have what is called a linear dispersion

curve which is to say that the wave-velocity (%) is independent of the wave-length. Enforcing the

periodic boundary condition & ., (x = 0,t) = & o (z = L,t), we see that we must have e?* = 1 or

kL = 2nm, where n is an integer. Thus we find that between the fundamental with wave-number
kL

27/L and some wave-number k there are n = 3~ modes. Therefore the number of modes (with

periodic boundary conditions imposed) with wave-numbers between k and k + dk are
L
dn = —dk
" 2m

At any given time t the configuration of the string £(z,t) may be expanded into the modal functions

n=-+oo

> Ealt)ee

n=-—oo

where k, =n- (QL") are the wave-numbers of the modes. Also note that as & must be real £ = &_,,.

Instead of describing the system by £(x,t) we may equally well regard the Fourier components
&n(t) as the dynamical variables of the system. Substitution of the Fourier expansion of £ into the
wave-equation yields
d2
ﬁgn = —Wiﬁn
as the different modes are independent (here w? = v?k2). Note that the displacements &, (t) cor-
responding to each mode behaves simply like a simple harmonic oscillator with its characteristic
angular frequency wy,.
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We thus have the equations of motion of a bunch of oscillators. Continuous systems such as
strings and fields satisfying such wave-equations can thus alternatively be looked upon as a collection
of an infinite number of oscillators corresponding to the different modes.

Exercises

A pre-requisite of any course on Quantum Mechanics is familiarity with Classical Mechanics
which you already have. Chapter I has been included just to remind you of what you have studied
earlier and we are providing the following sample problems as exercises

1. Consider a particle of mass m moving in one dimension under the action of a force proportional
to the its displacement z from the origin and directed towards the origin (viz. F = —kx).

(a)Set up Newton’s Equation of Motion for this system and solve it to obtain the solution x =
Acos(wt + 0) where A and 6 are constants of integration and w = /Z is the so called classical
frequency. What is the kinetic energy of the particle? What is its potential energy? What is its
total energy? What is the average kinetic energy over a cycle?

(b) What is the Lagrangian for this system and what is the Lagrange’s Equation of Motion?

(c) What is the momentum canonically conjugate to the coordinate 7 What is the Hamiltonian
and what are the Hamilton’s equations of motion for this system?

2. Consider a particle of mass m constrained to move along a circular hoop of radius a kept fixed
in a vertical plane, at the surface of the earth (with a gravitational force F = —mgk: where k is
the unit vector upwards and g is the acceleration due to gravity). What is the total number of
constraints? What is a convenient choice of generalized coordinate(s)? Set up the Lagrangian of the
system. What is the canonically conjugate momentum? What is the Hamiltonian of the system?
Write down the equation of motion.

3. Counsider two particles of masses m; and ms moving in three dimensions [coordinates 7 and 7%]
interacting with each other via a potential V (7], 75). Show that if the system is to be displacement
invariant (viz. independent of the choice of origin of coordinates) then the potential must be a
function of 7= 7} — 7. Furthermore, if one has to have isotropy (independence with respect to the
orientation of the coordinate axes) and there are no other intrinsic vectors of the particles’, show
that the potential must be a function of » = || viz. the force is what is known as ‘central’. Set
up the Lagrangian for such a system of two particles interacting through a central force. Make a
m171+moits

transformation from 77,7 to ¥ = 7] — 7, R= a2 in the Lagrangian. Find the momenta p’

and P canonically conjugate to 7 and R. This ‘canonical transformation’ is known as the laboratory
to centre-of-mass transformation. Introduce the notation m = % called the reduced mass.

T Foot-note to this question: Suppose the two particles had magnetic moments (i; and fis what
would be the force due to the magnetic interaction between the two, and what is the corresponding
potential? This is to make you appreciate the fact that there could be non-central interactions too
consistent with over all isotropy. Explain why this is consistent with over all isotropy.

4. Show that for the Kepler Problem [viz. potential V(r) = —£ following the notation of the

previous exercise| apart from the orbital angular momentum L =7x P, the vector A= Z?XTE — n? is
also a constant of the motion. Show that A2 = % + k2 (here E is the energy). Calculate A7 and
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hence obtain the polar form of the elliptic orbit (for F < 0) and demonstrate that A), the so-called
Runge-Lenz vector, is a constant vector pointing along the major axis of the elliptic orbit.

5. Consider the necklace of beads each of mass m jointed to each other by weightless string seg-
ments of length A (providing tension T') as discussed in the Appendix. Set up the Lagrangian of
the system. Go to the limit A — 0 and m — 0: m/A — p and introduce the notion of a Lagrangian
density. Obtain the Euler-Lagrange equation that minimizes the Action here to arrive at the wave
equation for a substantive string. Introduce the momentum variable conjugate to ¢ (in the notation
of Appendix TA) and hence obtain the Hamiltonian density of the string and go on to write out the
Hamilton’s equations of motion for the string.

6. Suppose a system of free particles in one dimension are somehow kept at thermal equilibrium at
some temperature 7. Use the Maxwell-Boltzmann factor e~ /%87 (with kp=Boltzmann constant)
for the relative probability for the particle’s energy to be E in order to find the average energy per
particle.

Repeat the same for a system of simple harmonic oscillators. Also find the average values of the
displacement x as also the mean-square displacement. What is the average energy per oscillator
when the system is at a temperature 7.

BIOGRAPHICAL AND HISTORICAL NOTES

Galileo Galilei (1564-1642) : studied medicine to please his father but was intensely inter-
ested in mathematics, physics and astronomy. He was an ill-paid professor of mathematics at Pisa
in 1589, moved to Padua in 1591 and later to Florence in 1610 where he observed through his tele-
scope (with a convez-objective and a concave-eyepiece) for the first time the mountains on the Moon,
and the four satellites of Jupiter and several faint stars invisible to the naked eye. He described his
observations in a book Sidereal Messenger. He lent support to the Copernican heliocentric cosmology
through his famous work Dialogue on the Two Chief World Systems, Ptolemaic and Copernican in
1632.

This book is in the form of discussions, narrated day by day, between Salviatus (presenting the au-
thor’s point of view), Simplicius (a ‘simpleton’ who blindly follows Aristotle’s views on mechanics)
and Segredus (an intelligent layman without any hang-ups).

The Catholic Church prohibited the reprinting of this work and Galileo was made to face trial before
the Holy Office of the Inquisition for heresy and was found guilty.

In this context it is interesting to note some words he wrote to a friend: “Why is it that, in order
to understand the world, we must begin with the investigation of the Words of God, rather than his
Works? Is then the Work less venerable than the Word?”

He observed the isochronicity of a pendulum and through experiments with balls rolling down inclined
planes demonstrated the time taken by bodies to fall through a given height was independent of their
mass. His work on mechanics was completed while he was under house arrest and his work ‘Dis-
courses Concerning Two New Sciences’ (1638) was smuggled out of Italy and published in Protestant
Holland. He is often described as the Father of Modern Physics as he combined observation, con-
trolled experiments, theory and mathematics!

Isaac Newton (1642-1727) : Newton was born in England in the year Galileo died in Italy.
After grammar school he went to Trinity College, Cambridge in 1661, where he remained for nearly
forty years. In 1665 because of the Great Plague he went back to his isolated home at Woolsthorpe
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and the next two years were ‘miraculous years’ when he invented and discovered the binomial the-
orem, the method of tangents, the differential calculus, dispersion of light, integral calculus, and
he began to think about gravity and the orbit of the moon. When he returned to Trinity College
i 1667 he was elected a Fellow and in 1669 became Lucasian Professor. In 1679 he was able to
show from his mechanics that planets have elliptical orbits. Halley visited Newton in 1684 and urged
him to write a work on dynamics which he did in eighteen months with his Philosophiae Naturalis
Principia Mathematica - ‘The Mathematical Principles of Natural Philosophy’ the greatest book ever
written, perhaps! Indeed Pierre-Simon Laplace wrote:‘The Principia is pre-eminent above any other
prodction of the human genius’. In 1704 he published another great work Optiks. Einstein wrote of
him: “Nature was to him an open book”. The poet Wordsworth recorded his thoughts looking at the
statue of the great thinker:

“vniins looking forth by light

Of moon or favouring stars, I could behold

The antechapel where his statue stood

Of Newton with his prism and silent face

The marble index of a mind for ever

Voyaging through strange Seas of Thought, alone”

Leonhard Euler (1707-83) : Swiss mathematician who studied at the University of Basle and
became close friend with Daniel Bernoulli who persuaded him to join him at St. Petersburg in 1727
where he became professor of physics in 1730. He lost the sight of his Tight eye perhaps because
of looking at the Sun during his astronomical studies. In 1741 joined Frederick the Great’s Berlin
Academy of Science. In 1766 Euler accepted Catherine the Great’s offer of Directorship of St. Pe-
tersburg Academy where he became totally blind but continued his work. FEuler was the most prolific
mathematician in history - he systematized analysis, put calculus and trigonometry into its modern
form, discovered the Euler’s number e = 2.71828 - - -, developed series solutions, solved linear differ-
ential equations, developed partial differential calculus, developed mechanics, solved approximately
the three body FEarth, Sun and Moon problem, developed classical perturbation theory, worked on fluid
flow, geometry and acoustics. He is well known for the Euler’s rule: A polyhedron with V wvertices,
F faces and E edges satisfies V+F-E=2, which should be known to every school-boy.

d’Alembert (1717-83) : French mathematician who discovered d’Alembert’s principle of me-
chanics. Clarified the concept of limit in calculus. In 1743 he published his Trait de Dynamique
(Treatise on Dynamics) which include his principle of virtual work. He developed the theory of par-
tial differential equations and solved such problems as that of the vibrating string and wave equation.
He joined Fuler, Clairault, Lagrange and Laplace in applying calculus to many problems in celestial
mechanics.

Lagrange(1736-1813) : born in Turin of a French father and Italian mother he took to math-
ematics. In 1766 he moved to succeed Euler as Director of the Berlin Academy of Sciences. In 1797
he went to Paris as Professor of Mathematics at the Ecole Polytechnique. He is famous for his
great book Analytical Mechanics which he started writing when he was 19 and published only when
he was 52. It developed mechanics using a combination of calculus and calculus of variations. Un-
like Galileo and Newton he used no geometric methods (there were no diagrams!). Napoleon is said
to have remarked to Lagrange on his book: “This work has no mention of God”, to which Lagrange
supposedly replied: “Sire, I had no need of that hypothesis™.

Laplace (1749-1827) : French mathematician, astronomer and physicist who developed ce-
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lestial mechanics and suggested (independently of Emanuel Kant) that the sun and the planets are
formed from a rotating disc of gas. In 1778 he showed that the gravitational perturbations of one
planet on another would not lead to instabilities in their orbits (Newton believed that such insta-
bilities could lead to the end of the world without divine intervention). Between 1799 and 1825 he
published his five volume work Mecanique Celeste which incorporated developments in mechanics
since Newton. The book frequently uses the phrase it is obvious even though sometimes it is not so.
Laplace also put a firm foundation on probability theory (binomial distribution). He also developed
the concept of the potential. It is interesting to note that in his early years he collaborated with
the great chemist Lavoisieur. Laplace also worked in the planning of the Ecole Polytechnique with
Napoleon. It was Laplace who suggested that the basic unit of length be taken as the metre and
rationalized the metric system. It may also be noted that he died almost exactly a century after the
death of Newton.

Thomas Young (1773-1829) : English physicist, physician and Egyptologist who while still a
student discovered the role of the ciliary muscles on the accomodation of the eye through changes in
the focal length of the optic lens, a finding that led to his election to the Royal Society in 1794. In
1801 he could describe and measure astigmatism. He suggested that the perception of colour is in the
response to the primary colours: red, green and violet light, a theory later developed by Helmholtz
and of use to colour photography and colour television. He showed how every colour could be repre-
sented by a point inside an equilateral triangle where the perpendicular distances to the three sides
represent the proportion of the three primary colours. Here a theorem of geometry that the sum of
these three perpendiculars is a constant equal to the height of the triangle was used. Young was able
to assert that light consisted of waves on the basis of the observed interference phenomena. But the
long shadow of the great Isaac Newton which dominated over England presented a great difficulty
for the accepance of his ideas by his contemporaries. He was quite taken aback by this resistance
and turned his powers to decipher Egyptian picture writing from the signs on the Rosetta Stone, a
problem that he solved (also worked out by the Frenchman, Champillion).

Poisson (1781-1840) : French mathematician and physicist who contributed to mechanics,
electrostatics, elasticity, probability theory and complex analysis (he introduced the idea’of contour
integration). He was training to be a surgeon but Lagrange recognized his talent at the Fcole Poly-
technique.

William Rowan Hamilton (1805-1865) : Irish mathematician, born in Dublin, mastered 13
languages by the age of 13. At 10 developed interest in the mathematics of Newton and Laplace
and later went to Trinity College, Dublin. His work on caustics in optics led him to the Principle
of Least Action. Hamilton was appointed professor of astronomy at Dublin in 1827 and was made
Astronomer Royal of Ireland. Though immortalized by his formulation of mechanics, he was strongly
attracted by his study of quaternions (a noncommutative algebra). Hamilton was also poetically in-
clined and wrote reams of verse some of which he sent to the great poet Wordsworth who advised
Hamilton to devote himself to physics, perhaps a great gain to both physics and literature.

Charles Coulomb (1736-1806) : French physicist who discovered the inverse square law of
electric interactions by using a torsion balance he had invented capable of detecting forces equivalent
to 107° g.

Karl Friedrich Gauss (1777-1855) : A German and one of the world’s greatest mathemati-
cians. His father was a gardener and a merchant’s assistant; Gauss when he was three years old
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found an error in his father’s arithmetic; told in school, when he was 10, to add all the numbers
from zero to 100 wrote down the answer (5050) right away having discovered arithmetic progressions
by himself. The Duke of Brunswick impressed by him paid for his education.

At the age of eighteen Gauss showed how to construct, using straight-edge and compass only, a requ-
lar heptadecagon (an equilateral 17 sided figure) thereby making an advance in plane geometry, after
~ 20 centuries since Euclid (classical wisdom had it that such constructions were shown possible for
reqular polygons of sides numbering 3, 4, 5 and these multiplied by any power of two). This result
was considered by Gauss himself as his greatest work and wrote to a friend that such a polygon be
inscribed on his tomb after his death.

Gauss discovered the method of least square fitting. While studying he prepared his book Disquis-
sitiones Arithmeticae laying the foundations of number theory and arithmetic. He proved the fun-
damental theorem of arithmetic that every natural number can be expressed as a product of prime
numbers in just one way. Anticipated non-Euclidean Geometry as a boy. He discovered the Fun-
damental Theorem of Complex Analysis 14 years before Cauchy. He explored Conformal Mapping,
Theory of Surfaces and Electromagnetism. With Weber he invented the electromagnetic telegraph.
His contributions to topology and geometry are epoch-making. The Gaussian Error Curve is named
after him. He transformed almost all branches of mathematics. It is appropriate perhaps to remem-
ber him through a quotation: Gauss in a letter to the geometrician Bolyai wrote: “It is not knowledge
but the act of knowing that attracts me... when I have clarified a subject I turn away from it in
order to go into darkness again”.

Oersted (1777-1851) was a Danish physicist who discovered that an electric current produces
a magnetic field. believing that there existed some relationship between electricity and magnetism
he had an inspiration during a public lecture and demonstration one evening in 1820, when at the
end of his lecture, said, “let me place the magnetic needle parallel to the wire carrying a current”.
He was surprised to see the small magnetic needle suffer a deflection. He devoted three months to
further experimentation and published his results on the discovery of the magnetic effect of electric
currents.

Ampere (1775-1836) : French physicist who while attending a meeting of the French Academy
of Science and listening to a report by Arago on the work of Oersted on magnetic effect of electric
currents, realised the importance of these results and repeated the experiments and found a relation
between the direction of the current and the direction of the deflection of the magnetic needle which
he summarised in the famous “right hand rule”. He went on to making quantitative studies of the
force between two parallel current carrying wires and found that it is inversely proportional to the
square of the distance between them. Then Ampere made the mathematical formulation of the mag-
netic effect of currents which we now call Ampere’s Law. He also proposed the hypothesis that the
magnetism of a substance was due to molecular or atomic currents.

Michael Faraday (1791-1867) : British chemist and physicist. First to synthesize chloro-
carbons (CyClg and CoCly). Discovered benzene, and was the first to liquefy chlorine. Did mostly
chemistry till 1830. 1830 onwards he studied electricity, discovered the laws of electrolysis, electro-
magnetic induction etc. Faraday, building on the developments made by Oersted and by Ampere, put
forward the belief that since electricity could generate magnetism the reverse could very well be true
(this he noted in his diary in 1822). After numerous experiments carried out over over the next ten
years Faraday in 1931 announced his discovery of Electromagnetic Induction (also independently
found by Joseph Henry). Faraday worked on the idea that forces of electricity and magnetism
were also related to light. (Polarized light passing through a medium is affected by a magnetic field).
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During his studies on Electricity and Magnetism he formed the concept of field and lines of force.
A supreme experimentalist and one with deep insight and intuition. What Galileo was to Newton,
Faraday was to Mazwell. Faraday’s father was an ailing blacksmith and the boy became a bookseller’s
errand boy at the age of 13. Here he read an article on electricity in an encyclopaedia he had to
rebind and a book called Conversations in Chemistry which shaped his thoughts. He got tickets to
attend Davy’s last course of lectures at the Royal Institution and wrote down the notes elegantly,
bound them and sent it to Davy who took him on as an assistant. His main weakness was a lack of
mathematics training but despite that handicap with his deep intuition and relentless hard work he
made huge, gigantic and pioneering strides.

Joseph Henry (1797-1878) : After Franklin he was the first American to devote himself to
the study of electromagnetic phenomena on which he worked till he was 80 years old. He began as an
apprentice to a watch-maker but the business failed. He began to write plays and acting for a living.
By chance he came across a book on science and began to attend the Albany Academy. He obtained
a position at the College of New Jersey (later my alma mater Princeton University) in 1832. He
built electromagnets and studied them. He discovered electromagnetic induction independently. The
unit of self inductance is named after Henry [a coil has a self-inducance of one henry (H) if the
back emf in it is 1 volt when a current change of one ampere per second is made in it]. Henry was
a Calvinist and refused increase of his salary for thirty years.

James Clerk Maxwell (1831-79) the great Scottish physicist who produced the unified theory
of Electro-Magnetism and the Kinetic Theory of Gases. At school his country-accent and home-
designed clothes gained him the name of ‘Dafty’ caused him to be shy. He was happier at the
Edinburgh University. As early as 1849 he showed that all colours could be derived from the primary
colours of red, green and blue. He suggested the idea of colour photography. Later (1850) he entered
Trinity College, Cambridge. He secured a Professorship at Aberdeen and later moved to King’s
College, London. After the demise of his father (1865) he resigned his position at King’s and went
back to his family home in Scotland (but still doing research). He developed the kinetic theory of
gases. He was not only a theorist but also an experimentalist. He showed in 1865 that the viscosity
of gases is independent of pressure and is roughly proportional to temperature. In 1874 he was per-
suaded to become the first Cavendish Professor of Experimental Physics at Cambridge. He perfected
with surpassing beauty the work of Faraday on Electromagnetism and introduced the notion of the
Displacement Current. He developed the Field Concept and went on to anticipate electromagnetic
waves. He contracted cancer and died in 1879 aged 48.

Sadi Carnot (1796-1832) : French physicist and one of the founders of thermodynamics
through his idea of the idealised reversible heat engine. His father had been Napoleon’s Minister of
War, but left politics for science. Sadi was educated by his father and later at the Ecole Polytech-
nique and was an engineer in the army. He died young of cholera. His paper on the “Reflections
on the Motive Power of Fire” (1824) was crucial for the development of thermodynamics though his
arguments were based on caloric fluid theory of heat where heat was considered to be a fluid which
flows from a higher level (temperature of the source) to a lower level (temperature of the sink) with
the heat engine doing work in the process. It was only later that Carnot’s work was truly appreciated
by Kelvin and by Clausius.

Rudolf Clausius (1822-1888) [pronounced Klowzeeus|: A German theoretical physicist who
was one of the founders of thermodynamics. His teachers included Ohm and Dedekind. The First
Law of Thermodynamics was essentially due to Joule. The Second Law was due to Clausius who
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introduced the idea of Entropy. The Second Law generated great controversy but Clausius, Mazwell
and W. Thomson (later Lord Kelvin) vigorously defended the ideas. Clausius did important work
on the kinetic theory of gases and was the first to introduce the idea of mean free path and effective
molecular radius.

James Joule (pronounced jowl) (1818-1889) was a British physicist. He established the
mechanical theory of heat, and measured the mechanical equivalent of heat. His tutor was Dalton. He
was encouraged in his work by W. Thomson (Kelvin). Studied heat generated by a current through
a resistor. With Thomson he discovered the Joule- Thomson Effect.

Hermann Helmholtz (1821-94): German physicist and physiologist who discovered the Law of
Conservation of Energy, made deep investigations on FElectricity and Magnetism and delved into the
physiology of vision and hearing. His student was Hertz whom he encouraged to work on Maxwell’s
idea of electromagnetic radiation. He was so illustrious even to the man in the street that people
said of him: “He is only next to Bismarck!”. Of course as far as we are concerned he was far far
greater than Bismarck!

William Thomson (Kelvin) (1824-1907) was the son of a farm labourer. From Glasgow he
went to Cambridge from where he went to Paris to work on heat with Regnault and returned to
Glasgow where he worked for 53 years. As a young man he discovered Green’s work and helped to
publicise it. He did much to develop thermodynamics (he heard of Carnot’s work when in Paris). It
was he who proposed the absolute scale of temperature known to us as the Kelvin scale. Independent
of Clausius he proposed the Second Law of Thermodynamics. He worked with Joule on the relation-
ship of heat to work. He directed work on the first transatlantic cables. His home in Glasgow was
the first to be lit by electricity. He was honoured with the title of Lord Kelvin.

Ludwig Eduard Boltzmann (1844-1906) was an Austrian. He established Statistical Me-
chanics and related kinetic theory of gases to thermodynamics. He extended the kinetic theory of
gases introduced by Mazwell and developed ideas such as equipartition of average energy of a particle
%kBT per degree of freedom, as also the idea of the relative probability for a particle to have an
energy E in a system at temperature T namely e~ Z/*8T | the so-called Mazwell-Boltzmann factor.
He related the mechanics of a large number of particles in their most probable state to ideas of heat
and entropy (or measure of disorder S) and is immortalized by his famous S = kplnW. He derived
Stefan’s Law of Black Body Radiation from basic thermodynamics. Depressed by the lack of apprecia-
tion of his work Boltzmann is said to have committed suicide while on holiday on the Adriatic Coast.

Josiah Willard Gibbs (1839-94) was the founder of Chemical Thermodynamics. One of the
few US scientists of the nineteenth century. His was the second Ph.D. awarded in USA, a degree he
won from Yale where he remained during his life. Chemists had difficulty in appreciating his ideas.
But then later he was discovered by Planck, Finstein and others. Among his works the Phase Rule,
Gibb’s Chemical Potential, Gibbsian Ensemble etc are outstanding. He is perhaps one of the greatest
theoretical physicist born in USA.
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SOME NOTES ON THE CLASSICAL HISTORY OF THE CONCEPT OF ATOMS

Thoughts on the possibility of the atomistic nature of matter go back to antiquity. Indeed Leu-
cippus of Miletus, Democritus of Abdera and Kannad of India (who was known as the ‘atom eater’)
speculated that matter consisted of indivisible atoms, which of course also implied that there was
also a ‘vacuum’ (or empty space in between). This was considered logically necessary because once
you tnvoke the existence of atoms you must inherit with it the space between atoms which is bereft
of matter. Indeed the people who opposed this view held that vacuum is not possible and hence they
arqued that matter must be continually divisible. If we call this the prehistory of Atomism then the
capstone of this period is marked by the great work of Lucretius (an Epicurean philosopher living
in Rome of the first century B.C.) who wrote the book ‘De Rerum Natura’ (translated to ‘On the
Nature of Things’) in the form of an epic philosophical poem (in hexameter).

However, the classical concept of the atom was developed scientifically using the tools of chem-
istry and physics mainly in the eighteenth and the nineteenth century. This development is sketchily
discussed below through short notes on the main actors in this story.

Antoine Laurent Lavoisier (1743-1794): The French scientist known as the Father of Mod-
ern Chemistry. He clarified the composition of water and thereby began the subject of quantitative
analysis. He overthrew the phlogiston doctrine by showing that phosphorus (and sulphur too) in-
creased in weight when burnt and hence gained some material from the air (oxygen) rather than
lost something (phlogiston) as believed earlier. Indeed after Robert Boyle demonstrated that metals
become heavier on combustion it was decided that phlogiston had megative weight. The nature of
Combustion was correctly explained by Lavoisier. Incidently Laplace had worked with Lavoisier on
the physiology of respiration and the composition of air. They were one of the earliest to have used
Guinea Pigs for laboratory studies. His ‘Elementary Treatise on Chemistry’ is considered to be the
first modern chemistry textbook. He worked for a private company known as the Farmer’s General
which collected tazxes for the Government. He designed plans for lighting a town at night, he ran a
model farm, he developed the idea of savings banks and insurance societies and helped standardize
weights and measures in France. He was also a liberal and greatly influenced by the progressive
thoughts of the contemporary philosophers. However, unfortunately, after the French Revolution
when Marat came to power he was guilotined for being a member of the Farmer’s General.

Henry Cavendish (1731-1810) : English chemist and physicist who came from a rich family
of dukes etc. In 1749 he entered Cambridge and left in 1753 without a degree as he was scared
of examinations. Cavendish avoided human contact as far as possible and communicated with his
servants through written notes. Cavendish experimented with electricity in the 1770’°s and made sev-
eral important discoveries. He discovered hydrogen in 1766, as also made a systematic study of the
nature of carbon diozide. He also showed (as Lavoisier also did) that water results from the union
of hydrogen and orygen. He made the famous Cavendish experiment which enabled him to measure
the universal gravitational constant G. Thus he was the very first person to measure the mass of the
earth ! He was also the first person to measure the weights of gases and hence their densities. The
Cavendish Physical Laboratory at Cambridge was named after him. Incidently Cavendish published
little and it was James Clerk Mazxwell who was entrusted with the task of studying Cavendish’s note-
books and found out about the many discoveries and results obtained by this strange man.

John Dalton (1766-1844) was an English chemist and physicist who is best known for propos-
ing the first quantitative atomic theory. He was the son of a poor weaver. From his school years and
throughout his life he was interested in meteorology and kept daily records of weather conditions. At
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the age of twelve he began teaching at the local Quaker school. In 1793 he was appointed teacher
of mathematics and natural philosophy at the New College in Manchester where he worked for the
remainder of his life. From his interest in meteorology and the atmosphere he began investigating
gases in general and in 1801 presented his law of partial pressures for miztures of different gases.
In 1823 he discovered the law of multiple proportions for chemical combination of elements in form-
ing compounds and presented the first table of relative atomic weights. Between 1808 and 1827 he
published in three parts his ‘New System of Chemical Philosophy’.

Joseph Louis Gay-Lussac (1778-1850) lived in the time of the two ‘revolutions’: the French
Revolution and the Revolution in Chemistry began by Lavoisier. When he was a child during the
French Revolution his father was arrested and his tutor escaped from France. This was a blessing
in disquise for he was admitted to the Ecole Polytechnique which was a creation of the Revolution
for the training of scientists and technologists. There he had teachers like Laplace and Berthollet
(he imbibed the ideas of the great Lavoisier). He was later selected as a faculty member at that
very institution. He made many studies on gases. He even ascended to 7000 ft above sea-level in a
hydrogen balloon and had an adventurous spirit. He discovered that equal volumes of different gases
suffer the same expansion when raised through the same range of temperature when the pressure is
held fized (that is what we call the Charles Law). Though Charles had found this earlier he had not
published it. But Gay-Lussac is best known for his Law of Combining Volumes which he discovered
in 1808 which states that when two gases react the volumes of the reactants and the products if
gaseous are in the ratio of whole numbers (or integers).

Amadeo Avogadro (1776-1856) was born in Turin, Italy (though at that time Italy was not
unified but consisted of different Provinces and Principalities) and took his law degree at an early
age of sixteen and was a lawyer turned physicist and chemist. In 1811 he proposed the law that
goes under his name that, equal volumes of all gases (at equal temperature and pressure) consist
of the same number of molecules. What we now call the Avogadro number (N ) is the number of
molecules in one mole (molecular weight in grams of a material) of any substance. He was the
first to distinguish between atoms and molecules, though he did not use the word atom. He used
the word molécule intégrante for molecules of a compound, molécule constuante for molecules of
an element and molécule élementaire for what we would now call atoms. In 1820 Avogadro was
appointed professor of mathematics at Turin University. He was not recognised during his lifetime,
perhaps because he travelled but little and Piedmont was far from the centres of scientific activi-
ties in Furope. Also perhaps because the very idea of molecule associated with an element was not
acceptable by many because most chemists at that time thought that molecules can only form be-
tween different kinds of atoms through electric attraction or mutual affinity as it was called. Indeed
soon after the experiments of Galvani and of Volta on electricity it was the predominant view that
the electrical nature of the basic consituents was responsible for the formation of compounds. The
Swedish chemist Berzelius called this approach that of ‘dualism’. It was not until after his death that
the great chemist Cannizzaro developed and propagated Avogadro’s ideas. Indeed this happened (in
1860) almost half a century after Avogadro’s proposal. Of course the actual value of the Avogadro
number was only found later. Also the nature of the bonding of two hydrogen atoms into the molecule
was only clarified after the birth of Quantum Mechanics.

Dmitri Ivanovich Mendeleev (1834-1907) : The great nineteenth Russian chemist who tab-
ulated according to their atomic weights all chemical elements then known. This Periodic Table of
Elements unified a vast body of information and was a crucial advance. Born in Tobolsk, Siberia
the son of a local high school principal, he took a teacher’s training degree at St. Petersburg and



16 Elements of Quantum Mechanics

graduated in chemistry in 1856. He then studied in France and Germany (where he studied with
Bunsen) and became a Professor of Chemistry at the Technological Institute in St. Petersburg and
a professor at the university of the same city in 1866. He resigned from there because of a dispute
with the authorities there in 1890 and became the Director of the Bureau of Weights and Measures.
He wrote his great textbook ‘The Principles of Chemistry’ between 1868 and 1870 where he classified
the 63 elements then known. He found that if the elements are arranged in order of their atomic
weights chemically related elements appear at regular intervals. Here however he had to use empir-
ical knowledge in a very intuitive manner because many of the atomic weights were not known and
actually as it was to be made clear much later the important quantity was not the atomic weight
but the atomic number. Legally Mendeleev was a bigamist as he had not reqularised his divorce
from his first wife. It is said that he loved playing patience with cards and that he made cards for
each element in which he wrote down their major chemical properties and would often spend hours
arranging these ‘chemical’ rather than playing cards. The element Z=101 discovered in 1955 was
named Mendeleevium in his honour.

Electrochemistry & the Idea of the Atom:
Ever since the experiments of Galvani and particularly Volta’s clarification on the observations of
his predecessor the electrical nature of matter became an important issue. Humphrey Davy made
several important contributions such as the separation of alkali metal elements using electrolysis and
indeed also discovered the element chlorine through the electrolysis of muriatic (which we now call
hydrochloric) acid. It was, however, Michael Faraday who made a detailed and quantitative study of
electrolysis through his discovery and enunciation of the underlying laws (around the year 1840) :
o The mass of a substance liberated or deposited at an electrode in the process of electrolysis is pro-
portional to the quantity of electricity (current multiplied by the time) passed.
e The masses of elements liberated through the passage of the same quantity of electricity are pro-
portonal to their chemical equivalents.
While both Faraday and Mazwell believed that charge like mass could be indefinitely divisible, it is
noteworthy to remark that Helmholtz in his Faraday Memorial Lecture in 1881 made the assertion:
‘If we accept the hypothesis that elementary substances are composed of atoms, we cannot well avoid
concluding that electricity itself is divided into elementary portions which behave like atoms of elec-
tricity’.
Of course the matter was elucidated when J.J. Thomson discovered the electron and then it was clear
that the amount of electricity needed to deposit one gram mole of a univalent material should be e N
where e was the charge of the electron and N the Avogadro number. The charge of the electron
was measured by Millikan through his famous oil-drop experiment. One of the earliest attempts to
estimate the Avogadro number was made by Loschmidt in 1865 using estimates of the molecular
diameters and mean free paths (from the kinetic theory of gases) but that was rather rough. Later
Perrin in 1908 used Brownian motion measurements and Einstein’s 1905 paper on this question
made a more accurate determination. Bragg in 1913 measured unit cell lengths using X-ray diffrac-
tion in crystals and from that tried to find N. With all these cross checks the picture hangs together
very well indeed.



